
hearinglosssimulator Documentation
Release 1.0.0.dev

Samuel Garcia

Jan 23, 2018

Contents

1 Overview 3

2 Installation 5
2.1 Step 1 - Case 1 : with anaconda (prefered on window or OSX) . 5
2.2 Step 1 - Case 2 : with pip (prefered on linux) . 6
2.3 Step 1 - Case 3 : MacPorts and pip for OSX . 6
2.4 Step 2 - Windows with Intel . 7
2.5 Step 2 - Windows with Nvidia . 7
2.6 Step 2 - Linux with Intel . 7
2.7 Step 2 - Linux with NVidia . 7
2.8 Step 2 - macOS / Mac OS X . 7

3 Launch 9

4 Algorithm principle 11

5 Algorithm parameters 17

6 Calibration 19

7 Implementation details 21

8 GUI 23

9 Examples 27

10 API Documentation 29

i

ii

hearinglosssimulator Documentation, Release 1.0.0.dev

Near real time hearing loss simulator in python based on an Inverse Compressive Gammachirp.

This research was supported by the French National Research Funding Agency (CONTINT 2013, ANR-13-CORD-
0001, project Aida)

Documentation: http://hearinglosssimulator.readthedocs.io/

Source code repository and issue tracker: https://github.com/samuelgarcia/HearingLossSimulator/

Python Package Index: Not done. . .

License: MIT – see the file LICENSE for details.

Contents 1

http://hearinglosssimulator.readthedocs.io/
https://github.com/samuelgarcia/HearingLossSimulator/

hearinglosssimulator Documentation, Release 1.0.0.dev

2 Contents

CHAPTER 1

Overview

The original idea of the Inverse Compressive Gammachirp has been developed by Toshio Irino, Roy Patterson et al.

This code is a transcription in Python of an original matlab code of Toshio Irino. It is not an exact port but it is very
similar.

The 2 main objectives of the actual recoding was:

• to make the algorithm near real time.

• to get an opensource version.

The aim of this module is to simulate an hearing impairement to:

• demonstrate to normal listeners what a hearing loss is

• be used as a tool for sound designers to take into account hearing impairment

• run experimental protocols with a simulated and controled hearing loss

It can be used:

• offline in python script for testing the algorithm.

• online (on close loop on the audio device).

The algorithm simulates both outer hair cell (OHC) loss and inner hair cells (IHC) loss. The OHC loss is simulated by
a deficit in compression and IHC loss with a passive loss.

3

hearinglosssimulator Documentation, Release 1.0.0.dev

4 Chapter 1. Overview

CHAPTER 2

Installation

There are 2 steps:

1. install python and related stuff 3 cases here:

• with anaconda (prefered on windows and OSX)

• pip and virtualenvwrapepr (prefered on linux)

• MacPorts and pip for OSX

2. install opencl drivers themself many case:

• windows with Intel GPU

• windows with Nvidia GPU

• linux with Intel GPU

• linux with Nvidia GPU

• OSX with Intel GPU

Warning: OpenCL is a GPU language progamming. The central part of the simulator is done with OpenCL.
While OpenCL is an open implementation, OpenCL drivers by themself are not opensource. You need to install
the OpenCL drivers of your GPU device (and sometimes the OpenCL SDK) manually. On macOS, OpenCL is
natively installed and no driver needs to be installed.

2.1 Step 1 - Case 1 : with anaconda (prefered on window or OSX)

Do:

1. Download anaconda here https://www.continuum.io/downloads. Take python 3.6

2. Install it in user mode (no admin password)

3. Launch anaconda navigator

5

https://support.apple.com/en-us/HT202823
https://www.continuum.io/downloads

hearinglosssimulator Documentation, Release 1.0.0.dev

4. Go on the tab environements, click on root context menu.

5. Open Terminal and do this:

conda install scipy numpy cffi matplotlib
conda install pyqt=5 jupyter
pip install pyqtgraph==0.10 soundfile sounddevice

6. Download PyOpenCl here for windows : http://www.lfd.uci.edu/~gohlke/pythonlibs/

7. And do

cd C:/users/...../Downloads
pip install pyopencl2016.2.1+cl21cp36cp36mwin_amd64.whl

8. Finally:

pip install https://github.com/samuelgarcia/hearingLossSimulator/archive/master.
→˓zip

2.2 Step 1 - Case 2 : with pip (prefered on linux)

In a terminal in Ubuntu 16.04 do:

sudo apt-get install virtualenvwrapper python3.5-dev python3-tk
mkvirtualenv hls --python=/usr/bin/python3.5
workon hls
sudo apt-get install portaudio19-dev
pip install scipy numpy matplotlib cffi jupyter PyQt5 pyqtgraph==0.10 sounddevice
→˓soundfile

sudo apt-get install ocl-icd-libopencl1 ocl-icd-opencl-dev opencl-headers
pip install pyopencl
pip install https://github.com/samuelgarcia/hearingLossSimulator/archive/master.zip

2.3 Step 1 - Case 3 : MacPorts and pip for OSX

While this method works, the fact that it does not use virtualenv makes it potentially harmful to your machine, so use
wisely. . . Now this recipe assumes you have a working MacPorts installation, with XCode activated, etc.

In a Terminal, do:

sudo port install python35
sudo port install py35-numpy py35-scipy py35-pyqt5 py35-pip py35-pyopencl

Once Python 3.5 installed, we need to tell that the default Python should be that one. To avoid messing up with the
system python, it is perhaps wise to stick to python3 (that’s where it would be better to use virtualenv). To do this
we do:

sudo port select --set python3 python35
sudo port select --set pip pip35

Then we are ready to install HearingLossSimulator:

6 Chapter 2. Installation

http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.macports.org/

hearinglosssimulator Documentation, Release 1.0.0.dev

sudo -H pip install https://github.com/samuelgarcia/hearingLossSimulator/archive/
→˓master.zip

If you are using Python 2.7 as your default Python, then we need to tell pip to go back to 2.7:

sudo port select --set pip pip27

Note: it may very likely also work with Python 3.6, but it has only been tested with Python 3.5.

2.4 Step 2 - Windows with Intel

Go here https://software.intel.com/en-us/articles/opencl-drivers and download the sdk developpement kit for windows.

2.5 Step 2 - Windows with Nvidia

Go here https://developer.nvidia.com/opencl and download opencl drivers.

2.6 Step 2 - Linux with Intel

Two possibilities:

• The open source (sometimes bad perf):

sudo apt-get install beignet

• The official intel:

– go herehttps://software.intel.com/en-us/articles/opencl-drivers

– download the sdk developpement kit for linux.

2.7 Step 2 - Linux with NVidia

In a console:

sudo apt-get install nvidia-opencl-icd-340

2.8 Step 2 - macOS / Mac OS X

The OpenCL drivers should already be installed. Check this page for the available version: https://support.apple.com/
en-us/HT202823

2.4. Step 2 - Windows with Intel 7

https://software.intel.com/en-us/articles/opencl-drivers
https://developer.nvidia.com/opencl
https://support.apple.com/en-us/HT202823
https://support.apple.com/en-us/HT202823

hearinglosssimulator Documentation, Release 1.0.0.dev

8 Chapter 2. Installation

CHAPTER 3

Launch

Open a terminal and do:

hls

9

hearinglosssimulator Documentation, Release 1.0.0.dev

10 Chapter 3. Launch

CHAPTER 4

Algorithm principle

Toshio Irino and Roy Patterson et al. are the main contributors of the hearing loss simulator based on the compressive
gammachirp model.

For more detail you should read at leat these references:

• A dynamic compressive gammachirp auditory filterbank : Irino,T. and and Patterson,R.D. : IEEE
Trans.ASLP, Vol.14, Nov.2006.

• Accurate Estimation of Compression in Simultaneous Masking Enables the Simulation of Hearing Im-
pairment for Normal-Hearing Listeners : Irino T, Fukawatase T, Sakaguchi M, Nisimura R, Kawahara H,
Patterson RD : Adv Exp Med Biol. 2013

• Hearing impairment simulator based on compressive gammachirp filter : Misaki Nagae, Toshio Irino,
Ryuich Nisimura, Hideki Kawahara, Roy D Patterson : Signal and Information Processing Association
Annual Summit and Conference (APSIPA), 2014 Asia-Pacific

Note: The orignal algorithm has evoluted along the last decade. The actual python/opencl version is a mixed of some
of them!

Note: The very last version of Toshio Irino is now based on minimum phase filter for the synthesis part (the level
estimation part remains the same as before) : this has not been ported in python/opencl.

The main processing diagram is the following:

11

hearinglosssimulator Documentation, Release 1.0.0.dev

Steps:

1. PGC1 : The input sound is filtered by a bank of N passive gammachirp filter. N is typically 32.

2. Level estimation : The instantaneous level is estimated in dB for each band. Sample by sample.

3. HP-AF : A Highpass filter where the central frequency is dynamically controled by level.

4. PGC2 : Time reversal passive gammachirp. Identical to PGC1. This is used to cancel the phase delay
induced by the PGC1 across frequency bands. This induced a delay for realtime.

5. passive gain : provide an independent passive gain in each band.

6. sum : sum all bands for resynthesis.

Steps 1, 2, 3, 4: together are the inverse compressive gammachrip (InvCGC). This model the outer hair cell (OHC)
impairement by cancelling the natural compression.

Step 5: This step simulates a inner hair cells (IHC) loss with a static gain.

As example here the 1000 Hz band:

The PGC filter (in black) and HP-AF (color) levelled controled frequency response. Blue is used for low levels and
red is used for high levels. Note that the HP-AF is moving from left (low, blue) to right (high, red).

12 Chapter 4. Algorithm principle

hearinglosssimulator Documentation, Release 1.0.0.dev

The sum of the PGC1 + HP-AF + PGC2 is the InvCGC (Inverse Compressive Gammachirp). Blue is used for low
levels and red is used for high levels. Note that for low level there is a negative gain. For high level, the gain tends to
zero dB:

13

hearinglosssimulator Documentation, Release 1.0.0.dev

Here is the input/output inverse compressive gammachrip. It is than an expander.

14 Chapter 4. Algorithm principle

hearinglosssimulator Documentation, Release 1.0.0.dev

We also design a variante of this diagram: InvComp. In InvComp HPAF is replaced by a dynamical gain controlled
by the level. The input/output gain follow the same law than the InvCGC.

15

hearinglosssimulator Documentation, Release 1.0.0.dev

16 Chapter 4. Algorithm principle

CHAPTER 5

Algorithm parameters

The algorithm is done in the class InvCGC. Fixed parameters like nb_channel or sample_arte are provided at __init__
and all others parameters can be changed on the fly (but not instantenaously) in configure(. . .)

17

hearinglosssimulator Documentation, Release 1.0.0.dev

18 Chapter 5. Algorithm parameters

CHAPTER 6

Calibration

A major parameter of the algorithm is the calibration.

The compression loss depends both of the compression_degree and of the real level estimated in dBSPL in each band.
Theses levels must then represent the true levels otherwise the compression loss is not applied correctly.

By internal convention, the calibration parameter corresponds to the relation between dBSPL and dBFS:

𝐿𝑒𝑣𝑒𝑙𝑑𝐵𝑆𝑃𝐿 = 𝐿𝑒𝑣𝑒𝑙𝑑𝐵𝐹𝑆 + 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

Where:

• dBSPL is the value of the accoustic pressure

• dBFS is the classical scale for digital sound representation where 0 dBFS is the maximum value of a sound
which is limited by the sound device. As in many convention 0 dBFS is then a sinus with amplitude 1.
Bounds are then [-1., 1].

𝐿𝑒𝑣𝑒𝑙 = 20𝑙𝑜𝑔10(𝑝/𝑝0)𝑑𝐵𝐹𝑆

Where:

• p is the root mean square of the signal

• p0 is the reference (0 dBFS) = root mean square of sinus of amplitude 1.

𝑝0 = 1/𝑠𝑞𝑟𝑡(2)

Note: For online simulation the sound is clipped by [-1., 1]. But for offline simulation there is not such limitation so
the calibration level is NOT the maximum of the input sound. The algorithm itself does not clip.

If you want to play with signal that represents a real units of sound pressure in pascal (Pa), it is easy. In that case a
sinus with amplitude equal to 1 represents 1 Pa. In SPL the 0 dBSPL is given for 20µPa. So for 1Pa the true dBSPL
is:

𝐿𝑒𝑣𝑒𝑙𝑑𝐵𝑆𝑃𝐿 = 20𝑙𝑜𝑔10(𝑝/𝑝0) = 20𝑙𝑜𝑔10(1/𝑠𝑞𝑟𝑡(2)/20𝑒− 5) = 90.97

So for calibration=90.97, the sound represents the true sound presure in pascal.

19

https://en.wikipedia.org/wiki/Sound_pressure#Sound_pressure_level
https://en.wikipedia.org/wiki/DBFS
https://en.wikipedia.org/wiki/Sound_pressure#Sound_pressure_level
https://en.wikipedia.org/wiki/DBFS

hearinglosssimulator Documentation, Release 1.0.0.dev

20 Chapter 6. Calibration

CHAPTER 7

Implementation details

• All filters banks are computed in the time domain with IIR. So there is no window/overlap/add.

• All processing are done sample by sample, even level estimation.

• Practically, processing are applied on chunks (typically 512 samples) but there is no border effect since all filter
states are kept for the next chunk. So chunksize does not affect the processing (only latency).

• Filters are all biquadratic (more stable) = SOS (second order section)

• Implementation of SOS is done with form II.

• Nmber of sections: 8 (PGC1) + 4 (dynamic HP-AF) + 8 (PGC2)

• backward processing for PGC2 (time reversal) filter induces a delay. delay=backward_chunksize-chunksize.
backward_chunksize affects the processing. If it is too small, it leads to distortion in low frequencies.

• All HP-AF filters are precomputed for each band and each level before running. Filter coefficients are not
computed on the fly.

• Python/scipy is used for computing each filter (easy to debug)

• OpenCl is used for applying filters (faster)

• N sections for each channel are more or less computed in parrallel but performances depend of the GPU model.

21

https://en.wikipedia.org/wiki/Digital_biquad_filter#Direct_form_2

hearinglosssimulator Documentation, Release 1.0.0.dev

22 Chapter 7. Implementation details

CHAPTER 8

GUI

To start the main GUI:

hls

You should see this:

23

hearinglosssimulator Documentation, Release 1.0.0.dev

On the top toolbar there is:

• configure audio: this open a dialog box for chosing the good sound device for input and output. You can
play a sinus sound to test the output. Be carreful with the sound level you use to avoid inducing a true
hearing loss !!

• configure GPU : this open a dialog box for choosing the GPU

• calibration this dialog box provide help to set the correct calibration parameter which is the relation
between dbFS and dBSPL. See calibration. In this dialog box, you play on an output audio device a sinus
with an internal level equals to -30dbFS (or what ever). Make a real measurement with a sound level meter.
Report the measurement and the relation is automatically deduced.

On the bottom you can setup for each ear:

• the compression_degree for each band. 100% means no compression loss 0% means full compresison
loss. This give you the magenta curve.

• hearing level which you want to simulate. The black curve.

The passive loss between magenta and black curve is automatically deduced.

Before running with play/stop you need to compute at least once the filters. This can take sevral second depending on
the machine.

24 Chapter 8. GUI

hearinglosssimulator Documentation, Release 1.0.0.dev

When running you can bypass the simulator.

You also recompute on the fly new filters.

On the left, there are some presets. And you can save/load your preset in json files. Json files are easy to edit with a
standart text editor.

25

hearinglosssimulator Documentation, Release 1.0.0.dev

26 Chapter 8. GUI

CHAPTER 9

Examples

examples

27

hearinglosssimulator Documentation, Release 1.0.0.dev

28 Chapter 9. Examples

CHAPTER 10

API Documentation

api

29

	Overview
	Installation
	Step 1 - Case 1 : with anaconda (prefered on window or OSX)
	Step 1 - Case 2 : with pip (prefered on linux)
	Step 1 - Case 3 : MacPorts and pip for OSX
	Step 2 - Windows with Intel
	Step 2 - Windows with Nvidia
	Step 2 - Linux with Intel
	Step 2 - Linux with NVidia
	Step 2 - macOS / Mac OS X

	Launch
	Algorithm principle
	Algorithm parameters
	Calibration
	Implementation details
	GUI
	Examples
	API Documentation

